Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 26(6): 101117, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38459834

RESUMO

PURPOSE: We describe 3 families with Charcot-Marie-Tooth neuropathy (CMT), harboring a homozygous NDUFS6 NM_004553.6:c.309+5G>A variant previously linked to fatal Leigh syndrome. We aimed to characterize clinically and molecularly the newly identified patients and understand the mechanism underlying their milder phenotype. METHODS: The patients underwent extensive clinical examinations. Exome sequencing was done in 4 affected individuals. The functional effect of the c.309+5G>A variant was investigated in patient-derived EBV-transformed lymphoblasts at the complementary DNA, protein, and mitochondrial level. Alternative splicing was evaluated using complementary DNA long-read sequencing. RESULTS: All patients presented with early-onset, slowly progressive axonal CMT, and nystagmus; some exhibited additional central nervous system symptoms. The c.309+5G>A substitution caused the expression of aberrantly spliced transcripts and negligible levels of the canonical transcript. Immunoblotting showed reduced levels of mutant isoforms. No detectable defects in mitochondrial complex stability or bioenergetics were found. CONCLUSION: We expand the clinical spectrum of NDUFS6-related mitochondrial disorders to include axonal CMT, emphasizing the clinical and pathophysiologic overlap between these 2 clinical entities. This work demonstrates the critical role that alternative splicing may play in modulating the severity of a genetic disorder, emphasizing the need for careful consideration when interpreting splice variants and their implications on disease prognosis.

2.
Brain ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456468

RESUMO

Inherited glycosylphosphatidylinositol deficiency disorders (IGDs) are a group of rare multisystem disorders arising from pathogenic variants in glycosylphosphatidylinositol anchor pathway (GPI-AP) genes. Despite associating 24 of at least 31 GPI-AP genes with human neurogenetic disease, prior reports are limited to single genes without consideration of the GPI-AP as a whole and with limited natural history data. In this multinational retrospective observational study, we systematically analyse the molecular spectrum, phenotypic characteristics, and natural history of 83 individuals from 75 unique families with IGDs, including 70 newly reported individuals: the largest single cohort to date. Core clinical features were developmental delay or intellectual disability (DD/ID, 90%), seizures (83%), hypotonia (72%), and motor symptoms (64%). Prognostic and biologically significant neuroimaging features included cerebral atrophy (75%), cerebellar atrophy (60%), callosal anomalies (57%), and symmetric restricted diffusion of the central tegmental tracts (60%). Sixty-one individuals had multisystem involvement including gastrointestinal (66%), cardiac (19%), and renal (14%) anomalies. Though dysmorphic features were appreciated in 82%, no single dysmorphic feature had a prevalence >30%, indicating substantial phenotypic heterogeneity. Follow-up data were available for all individuals, 15 of whom were deceased at the time of writing. Median age at seizure onset was 6 months. Individuals with variants in synthesis stage genes of the GPI-AP exhibited a significantly shorter time to seizure onset than individuals with variants in transamidase and remodelling stage genes of the GPI-AP (P=0.046). Forty individuals had intractable epilepsy. The majority of individuals experienced delayed or absent speech (95%); motor delay with non-ambulance (64%); and severe-to-profound DD/ID (59%). Individuals with a developmental epileptic encephalopathy (51%) were at greater risk of intractable epilepsy (P=0.003), non-ambulance (P=0.035), ongoing enteral feeds (P<0.001), and cortical visual impairment (P=0.007). Serial neuroimaging showed progressive cerebral volume loss in 87.5% and progressive cerebellar atrophy in 70.8%, indicating a neurodegenerative process. Genetic analyses identified 93 unique variants (106 total), including 22 novel variants. Exploratory analyses of genotype-phenotype correlations using unsupervised hierarchical clustering identified novel genotypic predictors of clinical phenotype and long-term outcome with meaningful implications for management. In summary, we expand both the mild and severe phenotypic extremities of the IGDs; provide insights into their neurological basis; and, vitally, enable meaningful genetic counselling for affected individuals and their families.

3.
Ann Clin Transl Neurol ; 10(10): 1910-1916, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37553803

RESUMO

Bi-allelic variants in peroxiredoxin 3 (PRDX3) have only recently been associated with autosomal recessive spinocerebellar ataxia characterized by early onset slowly progressive cerebellar ataxia, variably associated with hyperkinetic and hypokinetic features, accompanied by cerebellar atrophy and occasional olivary and brainstem involvement. Herein, we describe a further simplex case carrying a reported PRDX3 variant as well as two additional cases with novel variants. We report the first Brazilian patient with SCAR32, replicating the pathogenic status of a known variant. All presented cases from the Brazilian and Indian populations expand the phenotypic spectrum of the disease by displaying prominent neuroradiological findings. SCAR32, although rare, should be included in the differential diagnosis of sporadic or recessive childhood and adolescent-onset pure and complex cerebellar ataxia.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Adolescente , Humanos , Criança , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/genética , Peroxirredoxina III , Degenerações Espinocerebelares/genética , Ataxias Espinocerebelares/genética , Alelos
4.
Hum Mol Genet ; 32(20): 2981-2995, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37531237

RESUMO

Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína Fosfatase 1/genética , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Glucose , Glicogênio , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/complicações
5.
Nat Commun ; 14(1): 4109, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433783

RESUMO

Genetic variants in chromatin regulators are frequently found in neurodevelopmental disorders, but their effect in disease etiology is rarely determined. Here, we uncover and functionally define pathogenic variants in the chromatin modifier EZH1 as the cause of dominant and recessive neurodevelopmental disorders in 19 individuals. EZH1 encodes one of the two alternative histone H3 lysine 27 methyltransferases of the PRC2 complex. Unlike the other PRC2 subunits, which are involved in cancers and developmental syndromes, the implication of EZH1 in human development and disease is largely unknown. Using cellular and biochemical studies, we demonstrate that recessive variants impair EZH1 expression causing loss of function effects, while dominant variants are missense mutations that affect evolutionarily conserved aminoacids, likely impacting EZH1 structure or function. Accordingly, we found increased methyltransferase activity leading to gain of function of two EZH1 missense variants. Furthermore, we show that EZH1 is necessary and sufficient for differentiation of neural progenitor cells in the developing chick embryo neural tube. Finally, using human pluripotent stem cell-derived neural cultures and forebrain organoids, we demonstrate that EZH1 variants perturb cortical neuron differentiation. Overall, our work reveals a critical role of EZH1 in neurogenesis regulation and provides molecular diagnosis for previously undefined neurodevelopmental disorders.


Assuntos
Transtornos do Neurodesenvolvimento , Neurogênese , Complexo Repressor Polycomb 2 , Animais , Embrião de Galinha , Humanos , Diferenciação Celular/genética , Núcleo Celular , Cromatina/genética , Metiltransferases , Transtornos do Neurodesenvolvimento/genética , Neurogênese/genética , Complexo Repressor Polycomb 2/genética
6.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768210

RESUMO

VPS13D is one of four human homologs of the vacuolar sorting protein 13 gene (VPS13). Biallelic pathogenic variants in the gene are associated with spastic ataxia or spastic paraplegia. Here, we report two patients with intronic pathogenic variants: one patient with early onset severe spastic ataxia and debilitating tremor, which is compound-heterozygous for a canonical (NM_018156.4: c.2237-1G > A) and a non-canonical (NM_018156.4: c.941+3G>A) splice site variant. The second patient carries the same non-canonical splice site variant in the homozygous state and is affected by late-onset spastic paraplegia. We confirmed altered splicing as a result of the intronic variants and demonstrated disturbed mitochondrial integrity. Notably, tremor in the first patient improved significantly by bilateral deep brain stimulation (DBS) in the ventralis intermedius (VIM) nucleus of the thalamus. We also conducted a literature review and summarized the phenotypical spectrum of reported VPS13D-related disorders. Our study underscores that looking for mutations outside the canonical splice sites is important not to miss a genetic diagnosis, especially in disorders with a highly heterogeneous presentation without specific red flags.


Assuntos
Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Tremor , Paraplegia , Mutação , Proteínas/genética , Linhagem
7.
F1000Res ; 12: 1113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38464738

RESUMO

Background: Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disorder that affects the upper and lower motor neurons. Several genetic risk factors have been identified in the past decade with a hexanucleotide repeat expansion in the C9orf72 gene being the most significant. However, the presence of C9orf72 repeat expansion has not been examined in the Transcaucasian region, therefore we aimed to analyse its frequency in Georgian patients with ALS. Methods: We included 64 self-reported Georgian patients with ALS from different parts of the country, fulfilling the Gold Coast criteria. To investigate the presence of an expanded GGGGCC hexanucleotide repeat in the non-coding region of the C9orf72 gene, we performed Repeat-Primed PCR (RP-PCR). Results: In total, 62 sporadic and two familial ALS cases were identified. Patients were aged 26 to 84 years with a mean age of 58.3 years at disease onset. Bulbar onset was observed in 21.88%, upper limb onset in 34.38%, and lower limb onset in 43.75% of the patients. Frontotemporal dementia (FTD) fulfilling the Strong criteria was diagnosed in seven patients (10.94%). C9orf72 repeat expansion was detected in only one case using RP-PCR; the patient had a family history of dementia. Conclusions: Our results indicate that C9orf72 hexanucleotide expansion does not belong to the major genetic risk factor of ALS in Georgian patients. Further genetic studies in a bigger study population are needed to reveal the genetic causes of ALS in the Transcaucasian population.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Pessoa de Meia-Idade , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Proteínas/genética , Expansão das Repetições de DNA , Demência Frontotemporal/genética
8.
J Exp Bot ; 54(381): 239-48, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12493851

RESUMO

Anthocyanins and condensed tannins are major flavonoid end-products in higher plants. While the transactivation of anthocyanins by basic helix-loop-helix (bHLH) transcription factors is well documented, very little is known about the transregulation of the pathway to condensed tannins. The present study analyses the effect of over-expressing an Sn transgene in Lotus corniculatus, a model legume, with the aim of studying the regulation of anthocyanin and tannin end-products. Contrary to expectation, effects on anthocyanin accumulation were subtle and restricted to the leaf midrib, leaf base and petiole tissues. However, the accumulation of condensed tannin polymers was dramatically enhanced in the leaf blade and this increase was accompanied by a 50-fold increase in the number of tannin-containing cells in this tissue. A detailed analysis of selected lines indicated that this transactivational phenotype correlated with high steady-state transcript levels of the introduced transgene and the introduction of a single copy of the CaMV35S-Sn construct into these clonal genotypes. While the levels of condensed tannins in leaves were increased by up to 1% of the dry weight, other major secondary end-products (flavonols, lignins and inducible phytoalexins) were unaltered in transactivated lines. These results give an initial insight into the developmental and higher-order regulation of polyphenolic metabolism in Lotus and other higher plant species.


Assuntos
Antocianinas/metabolismo , Lotus/genética , Proteínas de Plantas/genética , Taninos/metabolismo , Fatores de Transcrição/genética , Zea mays/genética , Flavonoides/metabolismo , Sequências Hélice-Alça-Hélice , Lotus/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA